Author(s): Sarah M. Smith, Zhanao Deng

Publication Year: January 2015

Download Resource File

The genus Coreopsis L. is Florida’s state wildflower; there is a strong interest in commercial production and large-scale planting of Coreopsis seed in Florida, especially the seed of Coreopsis leavenworthi Torr. & A. Gray (COLE) and Coreopsis tinctoria Nutt. (COTI). Both species belong to the same section [Calliopsis (Reichenb.) Nutt.] within Coreopsis and were known to be cross-compatible and produce interspecific hybrids when hand-pollinated or grown in close proximity. Little was known about the effects of such hybridization on progeny growth, development, and reproduction, which are very important to seed production and planting. F1 and F2 interspecific populations between COLE and COTI were created in the greenhouse and then evaluated in replicated field studies in two growing seasons. Results showed that interspecific hybridization between COLE (as the maternal parent) and COTI (as the paternal parent) significantly increased the plant height (by 11.4% to 18.7%), plant dry weight (by 38.6% to 63.9%), and time to flower (by 3.7 to 9.8 days) of the F1 and F2 progeny of COLE � COTI crosses. By contrast, interspecific hybridization between COTI (as the maternal parent) and COLE (as the paternal parent) did not cause significant changes in these characteristics of the F1 and F2 progeny of COTI � COLE crosses. The differences between the two species in responding to interspecific hybridization suggest that COTI played a more dominant role in controlling plant height, dry weight, and time to flower in its hybrids with COLE. Results pooled from all F1 or F2 progeny of reciprocal interspecific crosses showed that interspecific hybridization did not seem to affect the plant height and seedling emergence of F1 and F2 progeny but affected the dry weight, time to flower, pollen stainability, and seed production (per seed head) of these progeny. Heterosis was observed in the time to flower of F1 progeny in 2009. Heterosis was also evident in F1 progeny’s dry weight but followed with slight hybrid breakdown in F2 progeny. Pollen stainability and seed production both showed significant breakdown in F1 and F2 progeny: 53.3% to 81.1% reduction in pollen stainability and 12.6% to 38.2% reduction in seed production, respectively. Chromosome mispairing resulting from reported reciprocal translocations between the chromosomes of COLE and COTI might be the primary cause of low pollen stainability and seed production in F1 and F2 progeny. Maternal effects were detected in plant height and dry weight of F1 and F2 progeny. These results showed that interspecific hybridization between COLE and COTI would result in deleterious effects to both species; thus, it is very important to prevent cross- pollination and hybridization between them in commercial seed production and native plantings.
Suggested citation: J. AMER. SOC. HORT. SCI. 140(1):2737. 2015.